1WGQZ4.0-80A 微耕机 产品碳足迹评价报告

前言

本报告基于《环境管理生命周期评价原则与框架》(GB/T24040)、《环境管理生命周期评价要求与指南》 GB/T24044 和《生态设计产品评价通则》(GB/T32161-2005)提及的生命周期方法编写。

本报告编写单位: 杭州申乾裕科技有限公司

报告主要编写人:季裕丰、张慧、陈志刚

编制日期: 2025-05-5

报告审核人: 樊曙光

审核日期: 2025-05-7

报告申请者信息

公司名称: 浙江文信机电制造有限公司

社会信用代码: 91331002761335163P

地址:浙江省台州市椒江区心海路 59 号

联系人: 杜娟

联系方式: 18906593516

本报告采用 simapro 平台及中国 LCA 基础数据库 CLCD 完成。

目 录

1.	目标与	范围定义1	
	1.1. 目	标定义1	
	1.	1.1. 产品信息	
	1.	1.2. 功能单位与基准流1	
	1.	1.3. 数据代表性	
	1.2. 范	[围定义1	
	1.2	2.1. 系统边界	
	1.2	2.2. 取舍原则	!
	1.2	2.3. 数据质量要求2	!
	1.2	2.4. 软件与数据库2	!
2.	碳足迹	综合结果3	;
3.	碳足迹	结果解释3	j
	3.1. 分	阶段结果3	;
	3.	1.1. 原材料获取和加工阶段3	;
	3.	1.2. 原材料运输阶段4	1
	3.	1.3. 产品生产阶段4	Ļ
4.	结论与	建议4	ļ

1. 目标与范围定义

1.1. 目标定义

1.1.1. 产品信息

本研究的研究对象为: 1WGQZ4.0-80A 微耕机,具体信息如下:

表 1.1 产品基本信息表

基本信息	内容
生产厂家	浙江文信机电制造有限公司
产品重量	688kg
尺寸规格	1365*540*633.6mm
材料构成	
包装材料及规格	/
工艺路线及类型	机械加工、机械化农业及园艺机具制造
其他	/

1.1.2. 功能单位与基准流

本报告以台为功能单位。

1.1.3. 数据代表性

报告代表具体企业及产品研究,时间、地理、技术代表性如下:时间、地理、技术代表性如下:

- (1) 时间代表性: 2024
- (2) 地理代表性:中国
- (3) 技术代表性,包括以下方面:
 - 主要原料: 卷板、铝
 - 主要能耗: 电力、天然气
 - 工艺路线及类型: 机械加工、机械化农业及园艺机具制造

1.2. 范围定义

1.2.1. 系统边界

本研究的系统边界为,主要包括生命周期-生产阶段(从资源开采到产品出厂),主要包括钢材、锻件、轴承采购等过程。

系统边界描述(X=包含在评估范围内; MND=未包含在评估范围内)

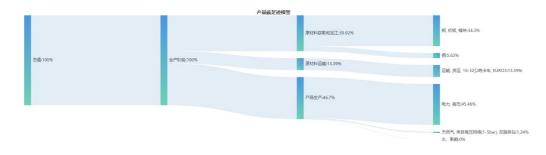
产品阶段			安装阶段		使用阶段			废弃阶段			
原材料获 取与供应	原材料 运输	产品生产	产品运输	产品安装	产品使用	产品维护	产品维修	产品拆解	废物 运输	回收利用	废弃
A1	A2	A3	A4	A5	B1	В2	В3	C1	C2	СЗ	C4
X	X	X	MND	MND	MND						

1.2.2. 取舍原则

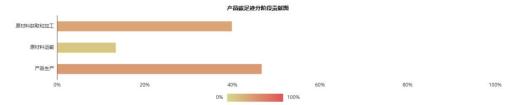
本研究采用的取舍规则以各项原材料投入占产品重量或过程总投入的重量比为依据。具体规则如下:

- ●普通物料重量<1%产品重量时,以及含稀贵或高纯成分的物料重量<0.1% 产品重量时,可忽略该物料的上游生产数据;总共忽略的物料重量不超过 5%;
- ●低价值废物作为原料,如金属屑、生活垃圾等,可忽略其上游生产数据;
- ●大多数情况下,生产设备、厂房、生活设施等可以忽略;
- ●在选定环境影响类型范围内的已知排放数据不应忽略。

1.2.3. 数据质量要求


数据质量代表 LCA 研究的目标代表性与数据实际代表性之间的差异,本报告的数据质量评估方法采用 CLCD 方法。

1.2.4. 软件与数据库


本研究采用 SimaPro 平台建立了 1WGQZ4.0-80A 微耕机生命周期模型,并计算得到 LCA 结果。数据库并内置了中国生命周期基础数据库(CLCD)、欧盟 ELCD 数据库。

研究过程中用到的中国生命周期基础数据库(CLCD)是由亿科开发,基于中国基础工业系统生命周期核心模型的行业平均数据库。CLCD 数据库包括国内主要能源、交通运输和基础原材料的清单数据集。

2. 碳足迹综合结果

碳足迹核算结果——IPCC 2013							
生命周期阶段	碳足迹(kg CO2 eq)	贡献比 (%)					
原材料获取和加工	4.99E1	39.92%					
原材料运输	1.67E1	13.39%					
产品生产	5.84E1	46.7%					
台计	1.25E2	100%					

3. 碳足迹结果解释

3.1. 分阶段结果

3.1.1. 原材料获取和加工阶段

3.1.2. 原材料运输阶段

3.1.3. 产品生产阶段

4. 结论与建议

本报告以 1 套 1WGQZ4.0-80A 微耕机的生命周期过程为研究对象,调研了原材料获取与供应、原材料运输、产品生产等过程,收集了各过程的清单数据,在 SimaPro 在线 LCA 软件上建立了 1WGQZ4.0-80A 微耕机的 LCA 模型,计算了 ADPE、ADPF、GWP、ODP、HT、FWAE、MAE、TE、POCP、AP、EP 等典型 LCA 指标的结果。

通过过程贡献分析,发现生产 1 套 1WGQZ4.0-80A 微耕机 GWP A1、A2、A3 过程的值分别为 4.99 E+1, 1.67 E+1, 5.84 E+1。

由于目前对温室气体关注度较高,因此从 GWP 指标进行分析来看,生产过程 A3 占比较大,要降低 GWP 首选从生产过程中入手。

建议一是生产过程入手,改变电的获取方式或生产方式,建议企业通过改进生产工艺,从而减少各阶段电力投入所带来的环境污染;二是从产品设计上进行原辅料的可替代化验证,减少原辅料对环境的影响;三是建议公司开设回收渠道,

通过再制造的方式生产,可减少主要原材料生命周期对环境的影响,从而减少对 环境的污染。